miércoles, 25 de diciembre de 2019

(463) - Teorema de Morley para las trisectrices. Centros de Morley


En el día de hoy traemos una entrega bastante curiosa: un teorema de geometría que involucra la trisección de ángulos, algo perseguido por los griegos mediante regla y compás, que siglos después se comprobó que era imposible.

Frank Morley, un matemático estadounidense de finales del siglo XIX, y principios del XX, descubrió este teorema en 1899. Según él mismo, los antiguos griegos ya tenían conocimiento, o al menos sospechaban, este resultado, pero no consta en ningún texto, ni la proposición en sí, ni la demostración.

Seguramente no se llegó a plantear el problema anterior hasta que no se entendió cómo trisecar un ángulo, en especial con regla y compás. Nótese que el problema general de la trisección de un ángulo no se resolvió hasta 1837 por Pierre Wantzel, y unos años después, 1846 por Évariste Galois.
 
El triángulo original en anaranjado, y el triángulo de Morley en rojo.
El Teorema establece que: “Las intersecciones de las trisecciones de un triángulo son los vértices de un triángulo equilátero”.
El triángulo equilátero resultante se le suele llamar triángulo de Morley.
Nótese que las trisectrices son las cevianas que dividen en tres partes iguales un ángulo.

Veamos ahora dos Centros de Kimberling asociados a este teorema.
El centro del triángulo de Morley, se llama I Centro de Morley y se le conoce como X(356) en la ETC [Encyclopaedia of Triangle Centres].
Es el centro de la circunferencia circunscrita al triángulo de Morley (circunferencia de Morley). Curiosamente ningún centro de Kimberling está en esta circunferencia.
I Centro de Morley - X(356)
[Nótese la 
circunferencia de Morley en azul]

La intersección de las cevianas que unen los vértices con sendos vértices opuestos del triángulo de Morley (pasando entre medias de las trisectrices) se llama II Centro de Morley, o a veces como I Centro e Morley-Taylor-Marr, y se le conoce como X(357) en la ETC [Encyclopaedia of Triangle Centres].
El II Centro de Morley es el centro de perspectiva respeto al triángulo original del I Centro de Morley.
 
II Centro de Morley / I Centro de Morley-Taylor-Marr - X(357)
Este teorema es una joya casi perdida y olvidada y que demuestra que a veces resultados increíblemente bellos parten de premisas simplonas.


AutorĐɑvɪẟ Ƒernández-De la Cruʒ.