viernes, 24 de mayo de 2024

(1009) - Integral de Choquet. Otra definición francesa de la integración

Esta última entrada antes del verano es simplemente para introducir brevemente al lector la idea de la integral de Choquet. Esta defición de la integral, que no es necesariamente aditiva como otras deficiniones, se utiliza en mecánica estadística, teoría del potencial y teoría de la decisión. Dejemos el vídeo introductorio aquí:


Aquí otro donde se comenta cómo escoger los pesos:



Autor: Đɑvɪẟ Ƒernández-De la Cruʒ.

viernes, 10 de mayo de 2024

(997) - Integrales trigonométricas de Fresnel

¿Qué crees que nos pondrá? ¿Algo díficil de integrar? - A lo que respondí: No sé, pero mientras no nos ponga ninguna como el seno o coseno de Fresnel, que se definen como una integral... - A lo que me respondieron: ¡No, hombre, no! ¡Cómo va a poner algo de eso! - Al recibir el examen vimos que había que integrar a lo largo de una curva parametrizada, donde según la parametrización indicada se tenían que usar estas funciones.

Empecemos con el seno normalizado de Fresnel: $$\begin{array}{ cccc }
\operatorname{S}: & \mathbb{R}& \longrightarrow & \mathbb{R}\\
& x & \longmapsto & \displaystyle \int_0^x \!\sin\!\left(\frac{\pi}{2}t^2\right) \;\mathrm{d}t
\end{array}$$ De forma análoga se define el coseno normalizado de Fresnel $$\begin{array}{ cccc }
\operatorname{C}: & \mathbb{R}& \longrightarrow & \mathbb{R}\\
& x & \longmapsto & \displaystyle \int_0^x \!\cos\!\left(\frac{\pi}{2}t^2\right) \;\mathrm{d}t
\end{array}$$ Veamos una gráfica de las funciones:
Con esta definición es fácil ver que son funciones $\mathscr{C}^\infty$ cuyo desarrollo en serie viene dado por: $$ \operatorname{S}(x) = \sum_{n=0}^\infty \frac{(-1)^n\pi^{2n+1}}{2^{2n+1}(4n+3)(2n+1)!}x^{4n+3} \qquad \operatorname{C}(x) = \sum_{n=0}^\infty \frac{(-1)^n\pi^{2n}}{2^{2n}(4n+1)(2n)!}x^{4n+1} $$ Uno de los límites interesantes que tienen estas funciones son: $$ \lim_{x\to\pm\infty}\operatorname{S}(x) = \lim_{x\to\pm\infty}\operatorname{C}(x) = \pm\frac{1}{2} $$ Veamos la curva conocida como espiral de Cornu $\Big\{\big(\operatorname{C}(x),\operatorname{S}(x)\big)\,/\,x\in\mathbb{R}\Big\}$
Estas funciones están íntimamente relacionadas con la función error gaussiano, $\varepsilon\!\operatorname{rf}(x)$. Estas funciones no solo aparecen en óptica, sino también en ecuaciones diferenciales, al considerar los iterantes de Picard para la ecuación diferencial del péndulo simple.


Autor: Đɑvɪẟ Ƒernández-De la Cruʒ.