El canadiense Norman J. Wildberger, profesor de matemáticas en la Universidad de Nueva Gales del Sur (Australia), se propuso hacer esta reformulación que terminó $\text{a.}2005$ con la publicación de su libro (enlace), y que luego fue relatando en una serie de vídeos de su canal de Youtube (enlace).
En vez de tratar con ángulos, distancias a modo de catetos opuesto, y adyacente, o hipotenusa, o algunos ratios, se utilizan los términos cuadranza, extensión, y cruce (en menor medida).
· Cuadranza (quadrance), $Q$ : Reemplaza el concepto de distancia. Mide el área del cuadrado dados dos de sus vértices, es decir, mide el cuadrado de la distancia, $d^2$ . Los griegos muchas veces, como en el teorema de Pitágoras, hablaban más de áreas que de longitudes.
· Extensión (spread) , $s$ : Reemplaza el concepto de ángulo. Mide la ratio entre la cuadranza ascendida entre la cuadranza recorrida, es decir, mide el cuadrado del seno, $\sin^2(\theta)$ .
· Cruce (cross), $1-s$ : Es el complementario a la extensión, es decir, mide el cuadrado del coseno, $\cos^2(\theta)\triangleq 1-\sin^2(\theta)$ .
Muchas de los resultados clásicos tienen sus análogos en este reformulación, veamos algunos ejemplos:
$$ \begin{matrix}
\text{Teorema de Pitágoras} & a^2 = b^2 + c^2 &\qquad& Q_1 = Q_2 + Q_3 \\
\text{Teorema del seno} & \displaystyle \frac{a}{\sin(\alpha)}=\frac{b}{\sin(\beta)}=\frac{c}{\sin(\gamma)} & \qquad & \displaystyle \frac{Q_1}{s_1}=\frac{Q_2}{s_2}=\frac{Q_3}{s_3} \\
\text{Teorema del coseno} & \displaystyle -a^2+b^2+c^2 = 2bc\cos(\alpha) &\qquad& (-Q_1+Q_2+Q_3)^2 = 4Q_2Q_3(1-s_1) \end{matrix} $$
\text{Teorema de Pitágoras} & a^2 = b^2 + c^2 &\qquad& Q_1 = Q_2 + Q_3 \\
\text{Teorema del seno} & \displaystyle \frac{a}{\sin(\alpha)}=\frac{b}{\sin(\beta)}=\frac{c}{\sin(\gamma)} & \qquad & \displaystyle \frac{Q_1}{s_1}=\frac{Q_2}{s_2}=\frac{Q_3}{s_3} \\
\text{Teorema del coseno} & \displaystyle -a^2+b^2+c^2 = 2bc\cos(\alpha) &\qquad& (-Q_1+Q_2+Q_3)^2 = 4Q_2Q_3(1-s_1) \end{matrix} $$
Caben resaltar dos fórmulas más:
$$ (Q_1+Q_2+Q_3)^2=2\big({Q_1}^2+{Q_2}^2+{Q_3}^2\big) \qquad (s_1+s_2+s_3)^2=2\big({s_1}^2+{s_2}^2+{s_3}^2\big)+4s_1s_2s_3 $$
Casi todas estas relaciones se pueden obtener partiendo de las relaciones clásicas y modificándolas hasta alcanzar una expresada en los términos deseados. Cabe resaltar a su vez que la trigonometría racional a veces hace uso de relaciones de cuadrados a los que Euclides les dedica algunas proposiciones en su obra magna Los Elementos, como por ejemplo:
$$ (a+b)^2 + (a-b)^2 = 2(a^2+b^2) \qquad (a+b)^2 - (a-b)^2 = 4ab $$
O haciendo uso de la Identidad de Brahmagupta-Fibonacci/de Diofanto:
$$ (a_2b_1-a_1b_2)^2+(a_1a_2+b_1b_2)^2=\big({a_1}^2+{b_1}^2\big)\big({a_2}^2+{b_2}^2\big) $$
Autor: Đɑvɪẟ Ƒernández-De la Cruʒ.
Muy interesante esta forma de ver la trigonometría, la verdad. Ya lo había previsualizado en algún artículo de programación pero no entendía muy bien que era cada término.
ResponderEliminarGracias por la explicación.