El lector conocerá la definición de número irracional:
\[
i \in \mathbb{R}\text{ es irracional } \Leftrightarrow \nexists p,q \in \mathbb{Z}\text{ tal que }i=\frac{p}{q}.
\]
Es trivial probar que $\sqrt{2}$ es irracional (de ahí su estatus de ejemplo estándar). Pero cuando nos salimos de los números algebraicos, la cosa ya no es tan sencilla.
\phantom{meter un espacio así}
Aquí nos fijaremos en el número $e$. Recordemos que
\[
e=\sum_{k=0}^\infty \frac{1}{k!} = 1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots \approx 2,718.
\]
Supongamos que $e$ fuera racional, $e=p/q$ donde $p$ y $q$ no comparten factores primos. Llamemos $\displaystyle S_n=\sum_{k=0}^n \frac{1}{k!}$ a las sumas parciales. Se pueden dar dos casos:
Probar que $e$ es trascendente (es decir, no algebraico) es poco trivial (enlace). Un poco más fácil es probar que $\pi$ es irracional (enlace). Por último, probar que $\pi$ es trascendente es aún más interesante (léase, complicado).
- que $e=S_n$ para cierto $n$.
- que $e \neq S_n$ para ningún $n$.
Probar que $e$ es trascendente (es decir, no algebraico) es poco trivial (enlace). Un poco más fácil es probar que $\pi$ es irracional (enlace). Por último, probar que $\pi$ es trascendente es aún más interesante (léase, complicado).
No hay comentarios:
Publicar un comentario