sábado, 19 de octubre de 2024

(1051) - La forma más matemática de comerte una pizza

Estoy seguro de que todos alguna vez hemos comido una pizza recién hecha en casa, y al ver que la pizza se doblaba hacia abajo, sin pensarlo dos veces hemos curvado el borde tal que así para mantenerla erguida.


En ese caso, quizás tu intuición esté a la altura del mayor matemático del siglo XIX y posiblemente de entre los mejores de toda la historia, Carl Friedrich Gauss. 
(Bueno, igual no, pero vamos a ver por qué)

Gauss probablemente no comiera mucha pizza en la Alemania de su época, pero aun así se interesó por describir la curvatura de las superficies y cuantificarla.

Dejando de lado un poco el rigor, podemos entender la definición de la curvatura de Gauss observando los cortes de la superficie de la que queremos determinar la curvatura con  ciertos planos, y viendo si se curva hacia arriba (curvatura positiva), hacia abajo (curvatura negativa) o es recta (curvatura 0).

Para sacar la curvatura total de la figura, se multiplica la de cada uno de sus ejes, por ejemplo vamos a ver esta montañita:


Intersecamos con los planos XZ e YZ y vemos que



K1 < 0


K2 < 0





Si las curvaturas son K1 y K2, como ambas son negativas, la curvatura total que es el procuto de las 2 es  K = K1 . K2 es positiva. 

También pueden darse otros casos como este:

                                            

De nuevo al cortar con los planos queda:





 








La curvatura respecto al XZ es negativa, pero como respecto al YZ es 0 automáticamente la curvatura total es K = K1 . K2 = 0.


Bien, ahora a la parte divertida, resulta que hay un teorema bastante importante que dice que, para cualquier figura, la curvatura de Gauss se mantiene por isometrías, es decir, mientras que no estiremos ni cortemos la figura, la curvatura de Gauss de la superficie se mantendrá.

Y aquí es donde entra en juego nuestro objetivo del día, comer pizza:

Esta es un pizza normal


Podemos apreciar que la pizza apoyada en la mesa es plana, por lo que tiene en un inicio curvatura total 0.
El teorema nos garantiza que por mucho que la movamos, esa curvatura total va a mantenerse, de forma que nos encontrarnos 2 situaciones familiares, en las que esta propiedad puede jugar:




En nuestra contra

O a nuestro favor

La curvatura total de la pizza debe seguir siendo 0, así que para no violar este "teorema Egregium" (que así se llama el teorema anterior), la pizza necesita ganar un eje respecto al que su curvatura sea 0, cualquiera de los 2 sirve.

Así que la próxima vez que comas una pizza con amigos, no desperdicies la oportunidad de contarles lo que es la curvatura de Gauss, que se vayan a los 2 minutos de oirte hablar y te dejen con la pizza para ti solo.




Autor: Raúl Barrero

No hay comentarios:

Publicar un comentario