sábado, 18 de abril de 2020

(593) - Cuando la regla del producto falla en el caso más simple. Ecuación de Meshchérskiy-Tsiolkóvskiy

En el día de hoy intentamos entender una paradoja al usar mal la regla del producto al derivar: Partamos de la II Ley [traslacional] de Newton - Ley Fundamental de la Dinámica [traslacional] (no en su formulación newtoniana, sino con el Teorema del momento lineal), y de la definición newtoniana de momento lineal ( $\vec{p}$ ). $$ \sum\vec{F} = \frac{\text{d}\vec{p}}{\text{d}t}\qquad\wedge\qquad \vec{p}\overset{\text{def}}{=} m\vec{v}$$ Ahora combinemos ambas, y apliquemos la regla de la cadena: $$ \sum\vec{F} = \frac{\text{d}(m\vec{v})}{\text{d}t} \implies \sum\vec{F} \overset{???}{=} \frac{\text{d}m} {\text{d}t}\vec{v} + m\frac{\text{d}\vec{v}} {\text{d}t} $$ Esto no cumple el Principio de Relatividad bajo las Trasformaciones galileanas (Invarianza galileana): para un objeto de masa variable cuando $\displaystyle \sum\vec{F}\equiv\vec{0}$ , la expresión anterior implicaría que permanece en reposo en un sistema que originalmente está en reposo, pero lo acelera una "fuerza ficticia" $\displaystyle -\frac{\text{d}m}{\text{d}t}\vec{v}\not\equiv\vec{0}$ en un sistema que se mueve con velocidad $\vec{v}$ .

Para resolver esta paradoja aparente, consideremos una acreción de masas (colisión donde se suman las masas), pues es más intuitivo que el caso de eyección (donde también se llega al mismo resultado): Consideremos en un instante $t$ dos partículas cuyas masas instantáneas son $\text{d}m$ , y $m$ con sendas velocidades instantáneas $\vec{v}_1$ , y $\vec{v}$ , por lo que tienen un momento lineal total de $\vec{p}\vert_{t}=\text{d}m\cdot\vec{v}_1+m\vec{v}$ .

Tras la colisión, en un instante $t+\text{d}t$ , la masa instantánea será $m+\text{d}m$ , y tendrá una velocidad instantánea $\vec{v}+\text{d}\vec{v}$ , ergo tiene un momento lineal $\vec{p}\vert_{t+\text{d}t}=(m+\text{d}m)\cdot(\vec{v}+\text{d}\vec{v})$ .

El impulso instantáneo es $\vec{I}\overset{\text{def}}{=}\vec{p}\;\big\vert_t^{t+\text{d}t}=\text{d}\vec{p} = \text{d}m\cdot(\vec{v}-\vec{v}_1) + m\text{d}\vec{v}$ (despreciando el producto de dos diferenciales) que ha transcurrido en un intervalo $\text{d}t$ , en $[t,t+\text{d}t]$ .

Nótese que $\vec{v}-\vec{v}_1$ es la velocidad relativa de la partícula de masa instantánea $m$ respecto a la otra partícula, la de masa instantánea $\text{d}m$ .

Si se halla la fuerza, se llega a una expresión similar, pero corregida respecto a la inicial ( $\vec{F}\neq m\vec{a}$ ) : $$\boxed{ \vec{F}_\text{ext} = \frac{\text{d}m}{\text{d}t}(\vec{v}-\vec{v}_1) + m\frac{\text{d}\vec{v}}{\text{d}t} }$$ El término $\displaystyle \vec{F}_\text{reac}\overset{\text{def}}{=}-\frac{\text{d}m}{\text{d}t}(\vec{v}-\vec{v}_1)$ es la fuerza de reacción, es decir, la fuerza ejercida sobre el sistema ya que hay una variación de masa. Si se pasa al otro término vemos una relación mucho más familiar: $$\vec{F}_\text{ext} + \vec{F}_\text{reac} = m\vec{a}$$ Es justamente por este término de donde surge la paradoja: la fuerza que aparece en la II Ley [traslacional] de Newton - Ley Fundamental de la Dinámica [traslacional] hace referencia a la suma de todas las fuerzas externas, es decir, a la fuerza neta (o resultante), pero una variación en la masa del objeto se puede deber a una fuerza interna, a un empuje, etc.
De aquí se saca la conocida Ecuación de Meshchérskiy (también transliterado como Meshchérskij , del ruso Меще́рский , también escrito como Меще́рскій anterior a la reforma ortográfica de $1918$), donde $\vec{v}_\text{rel} =-(\vec{v}-\vec{v}_1) $ : $$\boxed{ \vec{F}_\text{ext} + \frac{\text{d} m}{\text{d}t}\vec{v}_\text{rel} = m \frac{\text{d} \vec{v}}{\text{d}t} }$$ Su caso particular con $\vec{F}_\text{ext}\equiv\vec{0}$ se conoce como Ecuación del cohete de Tsiolkóvskiy (también transliterado como Tsiolkóvskij , del ruso Циолко́вский , también escrito como Ціолко́вскій anterior a la reforma ortográfica de $1918$), que implica resolver la ecuación diferencial: $$ -\frac{\text{d}m}{\text{d}t}(\vec{v}-\vec{v}_1) = m\frac{\text{d}\vec{v}}{\text{d}t} \iff -\frac{\text{d}m}{m} = \frac{\text{d}\vec{v}}{\vec{v}-\vec{v}_1} $$
Autor: Đɑvɪẟ Ƒernández-De la Cruʒ.

jueves, 16 de abril de 2020

(587) - Pseudovectores. Los vectores que no son vectores - falsos vectores


En el día de hoy traemos una entrada sobre qué es un pseudovector.

Consideremos dos vectores: $\vec{u}$ , $\vec{v}$ . Coloquemos un espejo perpendicular a cada uno en sendos orígenes. Si reflejamos los vectores obtendremos: $-\vec{u}$ $-\vec{v}$ , ergo son euvectores [vectores verdaderos o vectores polares].

Sin embargo si consideramos ahora el producto vectorial de los no-reflejados: $\vec{u}\times\vec{v}$ , y el de los sí-reflejados: $(-\vec{u})\times(-\vec{v})$ , ambos son el mismo vector. Este vector no ha cambiado de signo tras una reflexión, por lo que es un pseudovector [vector axial].

Un pseudovector es una magnitud física que se transforma como un euvector ante una rotación debida, pero que en el espacio tridimensional obtiene un cambio de signo bajo una rotación impropia (e.g. reflexión).

Veamos algunos ejemplos en física, ya que es una materia donde se puede explicar todo a través de vectores:
Los vectores posición $\vec{r}$ , desplazamiento $\Delta\vec{r}$ , velocidad $\vec{v}$ , aceleración $\vec{a}$ , tirón $\vec{\jmath}$ , momento lineal $\vec{p}$ , impulso lineal $\vec{I}$ , o fuerza $\vec{F}$ son euvectores.
Los vectores posición angular $\vec{\theta}$ , desplazamiento angular $\Delta\vec{\theta}$ , velocidad angular $\vec{\omega}$ , aceleración angular $\vec{\alpha}$ , tirón angular $\vec{\zeta}$ , momento angular $\vec{L}$ , impulso angular $\vec{\phi}$ , o torque $\vec{\tau}$ son pseudovectores.

Para terminar, he aquí una tabla con los correspondientes productos vectoriales.
x
euvector
pseudovector
euvector
pseudovector
euvector
pseudovector
euvector
pseudovector


AutorĐɑvɪẟ Ƒernández-De la Cruʒ.

jueves, 9 de abril de 2020

(577) - ¿Qué es un vector? 4 "definiciones"-interpretaciones según el tipo de matemático


En el día de hoy traemos una entrada sobre qué es un vector según diferentes enfoques.

Antes de empezar, cabe resaltar que para tanto algebristas como analistas prefieren representar un vector como sus componentes tal cual, mientras que los físicos pueden preferir representarlo como el producto de su módulo por su vector unitario correspondiente.

· Para un informático, o un estadista-probabilista, un vector es una forma eficaz de almacenar información que aparece como un listado o un array de diferentes números donde se considera la posibilidad de haber elementos repetidos.

· Para un algebrista, un vector es un elemento de un espacio vectorial: una n-tupla [pareja, trío, cuarteto…] de variables, constantes, parámetros o incluso funciones que vive en un espacio vectorial.

· Para un analista, su concepción de vector es muy similar a la de un algebrista, pues lo ve como una yuxtaposición ordenada y consecutiva de funciones (o similar).

· Para un físico, sin embargo, la concepción de un vector es la que más se asemeja a la que se da en ESO y Bachillerato: un vector es un “viaje”, una distancia flechada entre dos puntos del espacio bi- o tridimensional (uno que es el origen y otro, el destino)
Esto está muy bien para definir los vectores como posición ( $\vec{r}$ ), desplazamiento ( $\Delta\vec{r}$ ), o fuerza ( $\vec{F}$ ), pero, ¿y vectores como velocidad ( $\vec{v}$ ), aceleración ( $\vec{a}$ ), campo ( $\vec{E},\vec{g},...$ ), o momentos ( $\vec{p},\vec{L},...$ )? Muy fácil: mediante derivadas, integrales, límites, y productos escalares y vectoriales. Toda la física se puede describir mediante el vector posición ( $\vec{r}$ ) y aplicado a varios operadores de derivación, integración,… Esto es el inicio de la cinética.

AutorĐɑvɪẟ Ƒernández-De la Cruʒ.

miércoles, 1 de abril de 2020

(569) - Integrales. Riemann vs Darboux (con GIFs descargables)


En el día de hoy traemos una entrada bastante útil: ¿En qué se diferencian la integral de Riemann de la integral de Darboux?

Riemann propuso su integral en un artículo de la universidad de Gotinga en 1854, pero se publicó póstumamente en 1866. Unos años después, en 1875, Darboux propuso su integral.
Cabe resaltar que ambas son equivalentes, es decir, una función es Riemann-integrable si y solo si es Darboux-integrable. Ambas empiezan haciendo una partición del intervalo de integración, y considerando la suma de las áreas de los rectángulos que aproximan la integral.

La integral de Riemann para cada subintervalo toma un nodo tal que la función evaluada en dicho nodo sea una aproximación de la altura promedia del rectángulo, cuya área aproxima el área de la función en dicho subintervalo.
Suma de Riemann del punto medio en una partición uniforme.

La integral de Darboux para cada subintervalo halla el ínfimo y el supremo que toma la función en dicho subintervalo. Luego calcula las áreas del “rectángulo inferior” (el rectángulo de área maximal que está contenido por la función) y del “rectángulo superior” (el rectángulo de área minimal que contiene la función).
Sumas inferior y superior de Darboux en una partición uniforme.

La construcción de Darboux es probablemente la más intuitiva, la que se utiliza muchas veces a la hora de demostrar proposiciones, y la que se enseña en Bachillerato, mientras que la de Riemann se suele usar a la hora de computar numéricamente una integral.

AutorĐɑvɪẟ Ƒernández-De la Cruʒ.

(571) - Integral de Stieltjes. Integrales sin dx .



En el día de hoy traemos una entrada bastante curiosa y olvidada hasta por los profesores de análisis: La integral de Stieltjes, de $1894$ .

Cuando nos explicaban qué era una integral veíamos qué significaba el signo integral, qué es el integrando (la función que se integra) y el integrador (con respecto a qué se integra) que solía aparecer como $\text{d}x$ . Pero, ¿qué pasa cuando el integrador es una función en sí, $\alpha(x)$ ?
Por ejemplo, ¿qué significan $\displaystyle\int\,\text{d}x^3$ o por ejemplo $\displaystyle \int x\,\text{d}e^x$ ?
La integral de Stieltjes da respuesta a esta pregunta centrándose en el integrador más que en el integrando, cumpliendo las siguientes propiedades respecto al integrador:
·Es lineal.
·Para un integrando positivo, se conserva la monotonía (sino, se invierte).
·El valor absoluto de la integral es menor igual que la integral del valor absoluto
·Cumple la identidad de Chasles.
·Si (el integrador) es diferenciable, se puede sustituir  $\text{d}\alpha(x)=\alpha^{(1)}(x)\,\text{d}x$ .

Combinando esta construcción de la integral con otras, nos da dos equivalentes: la de Darboux-Stieltjes y Riemann-Stieltjes (donde las integrales de Darboux y Riemann a secas son sendos casos particulares más simples). Las integrales de D.-S. y R.-S. son aplicaciones bilineales asimétricas que son un paso anterior a la introducción de la integral de Lebesgue.

Aunque esto pueda parecer en un principio muy raro, integrar por partes es aplicar la integración de Stieljes con dos funciones diferenciables. (Es más usando la integración por partes se llega a una aplicación bilineal simétrica y/o antisimétrica de la integral de D.-S. y de R.-S. )

Las integrales de Darboux, Riemann, o Lebesgue nos dicen cómo ha tratarse la integral según el integrando, mientras que la de Stieltjes, según el integrador.

AutorĐɑvɪẟ Ƒernández-De la Cruʒ.